КОСТНЫЕ ТРАНСПЛАНТАТЫ
Существует четыре типа костных трансплантатов:
-
Аутотрансплантат - в качестве источника костного материала костный блок, полученный от самого пациента. Существуют донорские зоны, где процессы костеобразования очень высокие. Если из этой области выпилить костный блок для пересадки, то в этом месте костная ткань восстановиться в течение полугода полностью. Этот блок подсаживается в нужную область для создания будущего объёма. В крайних случаях, костная ткань может быть взята за пределами полости рта. Наиболее распространенная область донорского забора – бедро, ребро, свод черепа. Аутотрансплантат, как правило, лучший трансплантат и обычно приводит к наибольшим результатам регенерации.Общеизвестно, что наиболее подходящими для трансплантации и последующей биоинтеграции несомненно являются аутотрансплантаты, которые готовятся из собственных тканей пациента и этим полностью исключаются основные иммунологические и большинство инфекционных осложнений при последующей пересадке. Однако, такие материалы должны готовиться непосредственно перед трансплантацией, в противном случае клиника должна иметь костный банк для хранения такого биоматериала, что в реальности доступно только очень крупным медицинским учреждениям из-за высокой стоимости приготовления и хранения данных материалов. Кроме того, возможности получения значительных количеств аутоматериала весьма ограничены и при его заборе, как правило, донор подвергается серьезным оперативным вмешательствам. Все это существенно ограничивает широкое применение аутотрансплантатов. Следовательно, в области лечения костных патологий перед тканевой инженерией стоит реальная задача по созданию биокомпозиционных материалов, применение которых обеспечит решение многих проблем как по трансплантации клеток и стимуляции формирования кости в местах ее повреждения, так и по снижению трудовых и финансовых затрат при устранении костных повреждений у больных различного профиля.
-
Аллотрансплантат - взят от человеческих доноров. Во многих странах существуют донорские программы, где можно указать, что в случае смерти, органы могут быть собраны из тела, чтобы сохранить или улучшить жизнь других людей. Кость, полученная в этом случае, проходит строгие испытания и многоступенчатую стерилизацию. В конечном виде донорская кость лишается всех индивидуальных свойств донора и фактически превращается в «строительный материал». Ваше тело преобразует донорскую кость в естественную кость, за счет активизации процессов регенерации.Ксенотрансплантат – костный материал, который забирают у животных. Кости животных, чаще всего крупного рогатого скота (специально выращиваемые для этого быки, лошади, свиньи), специально обрабатывают, чтобы сделать их биосовместимыми и стерильным. Он действует как строительный материал, который, со временем, в Вашем теле будет заменять естественную кость.
-
Синтетические и компазитные трансплантаты - являются инертными, искусственными синтетическими материалами. Для замещения костной ткани используется, искусственный материал, который имитирует природную кость. Чаще всего это форма трикальцийфосфата и гидрокси апатита. В зависимости от технологии, это могут быть рассасывающиеся или нерассасывающиеся материалы.В настоящее время для замещения костных дефектов в хирургической стоматологии, ортопедии и травматологии используются много различных форм гидроксиапатита, отличающихся по форме и величине частиц. Считается, что искусственно полученный гидроксиапатит, по химическому составу и кристаллографическим показателям практически идентичен гидроксиапатиту нативной кости. Многими авторами и экспериментально, и клинически показано, что использование гидроксиапатита имеет значительные преимущества перед другими имплантационными материалами. Так, к его положительным характеристикам относятся такие показатели как легкость стерилизации, продолжительный срок хранения, высокий уровень биосовместимости и крайне медленная резорбция в организме. Гидроксиапатит является биоинертным и хорошо совместимым с костью материалом, как было показано с помощью экспериментальных исследований. В процессе замещения костного дефекта в присутствии ГА под влиянием биологических жидкостей и тканевых ферментов гидроксиапатит может частично или полностью резорбироваться. Положительный эффект гидроксиапатита после его имплантации в костную полость объясняется, по-видимому, не только остеокондуктивными свойствами материала, но и его способностью сорбировать на своей поверхности белки, индуцирующие остеогенез.То есть, Ваше тело может или полностью заменить такой трансплантат естественной костью, или материал действует как решетка, на котором происходит природный рост кости. В любом случае, конечным результатом является создание достаточного костного объёма.
Как показывает повседневная практика, одной из важнейших проблем, с которой сталкиваются врачи-стоматологи всего мира, является проблема регенерации костной ткани вследствие различных хирургических вмешательств в челюстно-лицевой области, таких как осложненные экстракционные и реконструкционные вмешательства, проведение парадонтологического и имплантологического лечения, а также различных костнопластических операций.
Основные принципы данного подхода заключаются в разработке и применении при имплантации в поврежденный орган или ткань носителей из биодеградирующих материалов, которые используются в сочетании либо с донорскими клетками и/или с биоактивными веществами. Например, при лечении раневого процесса - это могут быть коллагеновые покрытия с аллофибробластами, а в сосудистой хирургии - искусственные сосуды с антикоагулянтами. Кроме того, одним из серьезных требований к такого рода материалам-носителям является и то, что они должны обеспечивать надежную поддерживающую, то есть опорную и/или структурообразовательную функцию в поврежденной области ткани или органа.
Следовательно, одной из основных задач тканевой инженерии в области лечения костных патологий является создание искусственных биокомпозитов, состоящих из алло- и/или ксеноматериалов в сочетании с биоактивными молекулами (костные морфогенетические белки, факторы роста и т.д.) и способных индуцировать остеогенез. При этом такие биоматериалы должны обладать рядом необходимых свойств кости.
- Во-первых, они должны выполнять и поддерживать объем дефекта.
- Во-вторых, обладать остеоидуктивностью, то есть активно побуждать остеобласты и, возможно, другие мезенхимальные клетки к формированию кости.
- И, в-третьих, иметь хорошие показатели биоинтеграции и биосовместимости, то есть быть деградируемыми и не вызывать у рецепиента воспалительных и иммунных реакций. Последнее качество обычно достигается в биоматериале только за счет снижения его антигенных характеристик.
Совокупность всех этих свойств позволяет таким биоматериалам параллельно с опорной, механической функцией, обеспечивать и биоинтеграцию - врастание клеток и сосудов в структуры имплантата с последующим формированием костной ткани.
Известно, что поддерживающий эффект любого биоматериала обеспечивается, как правило, его структурными особенностями. Для биоматериалов этот показатель обычно связан с архитектоникой нативной ткани, из которой он получен. Для кости, основными параметрами её структурной прочности являются твердо-эластические характеристики костного матрикса и величина пор в нем.
К наиболее распространенным биоматериалам с четко выраженной опорной функцией относятся искусственный и натуральный гидроксиапатит (ГА), биокерамика, полигликолевая кислота, а также коллагеновые белки.
Наиболее известным из современных биоматериалов является коллаген. Его широкое применение в практической медицине связано с развитием реконструктивной хирургии и поиском новых материалов, выполняющих каркасную и пластическую функции при регенерации тканей. К основным достоинствам коллагена - как пластического биоматериала следует отнести его низкую токсичность и антигенность, высокую механическую прочность и устойчивость к тканевым протезам. Источниками получения коллагена при изготовлении изделий для пластической хирургии служат ткани богатые этим белком - кожа, сухожилия, перикард и кость. Широкое распространение в медицинской практике получил раствор кожного коллагена, выпускаемый фирмой Collagen Corp. (Palo-Alto USA), под названиями "Zyderm" и "Zyplast". На основе этого коллагена были разработаны различные изделия медицинского назначения такие как - имплантаты, покрытия для ран, хирургические нити для ушивания раневых поверхностей и т.д.
В 70-х годах прошлого столетия были впервые получены данные о влиянии коллагеновых трансплантатов на репарацию костной ткани. При этом было установлено, что коллагеновые имплантаты способствуют пролиферации фибробластов, васкуляризации близлежащих тканей и, по-видимому, индуцируют формирование новой костной ткани с последующей ее перестройкой. В качестве быстро биодеградирующего материала коллаген был применен и в виде геля при восстановлении костных дефектов. Полученные данным автором результаты также позволили предположить, что препараты на основе коллагена способны стимулировать регенерацию костной ткани.
В это же время для замещения дефектов костной ткани были начаты исследования и по применению биокомпозиционных материалов, содержащих одновременно и коллаген, и гидроксиапатит. Гистологические и ультраструктурные исследования доказали, что композиция - коллаген и ГА положительно влияет на регенерацию кости гребня, но при этом такого рода биоматериалы выполняют главным образом каркасную и проводниковую функции, то есть проявляют свои остеокондуктивные свойства.
Тем не менее, по данным другой группы исследователей биокомпозиционные материалы, содержащие кожный коллаген и синтетический гидроксиапатит, обладают определенными остегенными потенциями. Эти экспериментальные результаты легли в основу дальнейшего применения этой группы препаратов материала в клинической практике.
Регенерация и восстановление костной ткани представляют из себя комплекс последовательных процессов, включающих как активацию клеток остеогенного ряда (рекрутирование, пролиферацию и дифференцировку), так и непосредственное формирование специализированного матрикса - его минерализацию и последующее ремоделирование костной ткани. При этом данные клетки всегда находятся под контролем и влиянием ряда биологических и механических факторов.
По современным представлениям тканевая инженерия (ТИ) костной ткани опирается на три основных принципа, обеспечивающих успешное замещение данной ткани.
Во-первых, наиболее важным принципом при создании биоматериалов и конструкций для имплантации является воспроизведение основных характеристик природного костного матрикса, потому что именно уникальное строение костной ткани оказывает самое выраженное влияние на процессы регенерации. Известно, что эти характеристики матрикса зависят от его трехмерной структуры и химического состава, а также от его механических свойств и способности влиять на клеточные формы соединительной ткани (СТ).
Архитектоника матрикса включает в себя такие параметры как соотношение поверхности к объему, наличие системы пор, и, что наиболее важно, его функциональные и механические свойства. Благодаря этим показателям матрикс, по-видимому, может регулировать врастание сосудов, обеспечивать хемотактические стимулы для эндогенных клеток, модулировать клеточное прикрепление, стимулировать деление, дифференцировку и последующую минерализацию. Считается, что трехмерная структура построения матрикса может влиять не только на процессы индукции, но и на саму скорость регенерации.
Следовательно, конструируемый с помощью тканевой инженерии биоматериал или конструкция должны обладать свойствами, которые в условиях in vivo способны обеспечивать как кондуктивные, так и индуктивные свойства природного матрикса. К первым относятся такие показатели как способность заполнения и поддержания объема, механическая интеграция, обеспечение проницаемости для клеток и сосудов. Вторые - обеспечивают прямое или опосредованное воздействие на клеточные формы, стимулируя их к формированию хрящевой и/или костной тканям.
Следующим важным принципом успеха направленной костной тканевой инженерии является применение экзогенных и/или активация эндогенных клеток, которые непосредственно участвуют в процессах созидания данной ткани. При этом источником таких клеток может быть как собственный, так и донорский организм
Как правило, при обратной трансплантации в организм стромальные клетки-предшественники способны дифференцироваться в зрелые формы, синтезировать матрикс и запускать каскад эндогенных реакций репарации костной ткани. Вместе с тем, альтернативный взгляд на применение композиционных биоматериалов предполагает их непосредственное воздействие на эндогенные костные и другие клетки соединительной ткани, их рекрутирование (привлечение) в зону имплантации, стимуляцию их пролиферации и повышение их биосинтетической активности, принуждая эти клетки активно формировать костную ткань. Кроме того, такие материалы могут быть хорошими клеточными носителями, на которых возможно выращивание стволовых клеток перед их трансплантацией.
Последним из главных принципов успеха тканевой инженерии кости является применение биоактивных молекул, включающих факторы роста, цитокины, гормоны и другие биологически активные вещества.
Для индукции костеообразования наиболее известными факторами являются костные морфогенетические белки, трансформирующий фактор роста - TGF-β , инсулиноподобный фактор роста IGF и фактор роста эндотелия сосудов VEGF. Следовательно, биокомпозиционный материал может быть насыщен и/или содержать в своей структуре данные биоактивные молекулы, что позволяет использовать его при имплантации в качестве депо для таких субстанций. Постепенное высвобождение данных факторов может активно влиять на процессы костного восстановления. Кроме данных веществ в состав композиционных материалов могут входить микро- и макроэлементы, а также другие молекулы (сахара, пептиды, липиды и т.д.), способные обеспечивать стимуляцию и поддержание повышенной физиологической активности клеток в восстанавливающейся костной ткани.
В настоящее время существует большое количество разнообразных биопластических материалов, которые обладают остеокондуктивными и/или остеоиндуктивными свойствами.
Наиболее важными требованиями к биопластическим материалам остаются такие параметры, как их антигенные и индуктивные свойства. Кроме того, для разного рода операций часто требуются материалы, обладающие, наряду с вышеуказанными показателями, хорошими пластическими или прочностными характеристиками для создания и поддержания необходимых форм и конфигураций при заполнении полостей и тканевых дефектов.
Это свойство позволяет биоматериалам быть не только инертными в отношении иммунной системы организма, но и в течение длительного времени после их имплантации быть устойчивым к биораспаду. В настоящее время для ускорения роста кости и мягких тканей активно применяется методика стимуляции клеток богатой тромбоцитами плазмой (БоТП). Эта новая биотехнология направленной тканевой инженерии и клеточной терапии является по мнению ряда авторов настоящим прорывом в хирургической практике. Однако, для получения такой плазмы требуется определенное техническое оснащение, а в ряде случаев и специально подготовленные сотрудники.
В настоящее время хорошо известно, что применяемые по отдельности и коллаген, и гидроксиапатит обладают в основном остеокондуктивными свойствами, то есть способны играть роль только «способствующего» материала для создания новой кости. Однако, эти молекулы могут оказывать на клетки остеобластического ряда и слабый остеоиндуктивный эффект, за счет некоторых своих биологических свойств.
Этот остеоиндуктивный эффект усиливается при комплексном применении этих двух типов молекул. С другой стороны, если вместе с коллагеном и гидроксиапатитом в биоматериалах будут представлены и сульфатированные гликозаминогликаны, то такой комплекс по своей структуре будет более близок к природному костному матриксу и, следовательно, обладать его функциональными характеристиками в более полном объеме. Так, известно, что сульфатированные гликозаминогликаны оказывают влияние на многие показатели обмена соединительной ткани.
Они способны снижать активность протеолитических ферментов, подавлять синергическое действие на межклеточный матрикс данных ферментов и кислородных радикалов. Блокировать синтез медиаторов воспаления за счет маскировки антигенных детерминант и отмены хемотаксиса, предотвращать апоптоз клеток, индуцированный повреждающими факторами, а также снижать синтез липидов и с помощью этого препятствовать процессам деградации. Кроме того, эти соединения принимают непосредственное участие в построении самих коллагеновых волокон и межклеточного матрикса в целом.
Очень важным свойством имплантируемого остеопластического материала является его способность индуцировать развитие сосудов потому, что именно оно потенциально определяет его остеоиндуктивные потенции.

Все препараты, методики и технологии лечения, медикаменты и оборудование, описанные на этом сайте используются мной в повседневной практике, и многократно проверенны ближайшими и отдалёнными клиническими результатами!